Chuang Li

Orcid: 0000-0002-9331-2278

Affiliations:
  • Xidian University, Hangzhou Institute of Technology, China
  • Harbin Engineering University, College of Information and Communication Engineering, China (PhD 2023)


According to our database1, Chuang Li authored at least 10 papers between 2020 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Forgetting the Background: A Masking Approach for Enhanced Infrared Small-Target Detection.
IEEE Trans. Geosci. Remote. Sens., 2025

Incremental Multitask Contrastive Learning Network for End-to-End Few-Shot Open-Set Classification of Hyperspectral Images.
IEEE Trans. Geosci. Remote. Sens., 2025

Semi-Supervised Graph Constraint Dual Classifier Network With Unknown Class Feature Learning for Hyperspectral Image Open-Set Classification.
IEEE Geosci. Remote. Sens. Lett., 2025

2024
Self-Adaptive Global Feature Fusion Network With Spectral Prompt for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote. Sens., 2024

2022
Enhanced Total Variation Regularized Representation Model With Endmember Background Dictionary for Hyperspectral Anomaly Detection.
IEEE Trans. Geosci. Remote. Sens., 2022

Spectral-Spatial Anomaly Detection via Collaborative Representation Constraint Stacked Autoencoders for Hyperspectral Images.
IEEE Geosci. Remote. Sens. Lett., 2022

2021
A Spectral-Spatial Method Based on Fractional Fourier Transform and Collaborative Representation for Hyperspectral Anomaly Detection.
IEEE Geosci. Remote. Sens. Lett., 2021

Hyperspectral Anomaly Detection Using Bilateral-Filtered Generative Adversarial Networks.
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2021

2020
A Spectral-Spatial Anomaly Target Detection Method Based on Fractional Fourier Transform and Saliency Weighted Collaborative Representation for Hyperspectral Images.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2020

Spectral-Spatial Stacked Autoencoders Based on the Bilateral Filter for Hyperspectral Anomaly Detection.
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2020


  Loading...