Hansheng Wang

Orcid: 0000-0003-2386-0209

Affiliations:
  • Peking University, Beijing, China


According to our database1, Hansheng Wang authored at least 33 papers between 2007 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
An attribute-based Node2Vec model for dynamic community detection on co-authorship network.
Comput. Stat., January, 2025

A geometric model with stochastic error for abnormal motion detection of portal crane bucket grab.
Eng. Appl. Artif. Intell., 2025

2024
Citation counts prediction of statistical publications based on multi-layer academic networks via neural network model.
Expert Syst. Appl., March, 2024

A Selective Review on Statistical Methods for Massive Data Computation: Distributed Computing, Subsampling, and Minibatch Techniques.
CoRR, 2024

2023
LMANStat Dataset.
Dataset, December, 2023

A Sequential Addressing Subsampling Method for Massive Data Analysis Under Memory Constraint.
IEEE Trans. Knowl. Data Eng., September, 2023

Gaotianchen97/LMANStat: Large-scale Multi-layer Academic Networks Derived from Statistical Publications v1.1.0.
Dataset, August, 2023

Gaotianchen97/LMANStat: Large-scale Multi-layer Academic Networks Derived from Statistical Publications v1.0.2.
Dataset, August, 2023

Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator.
J. Comput. Graph. Stat., 2023

An Asymptotic Analysis of Random Partition Based Minibatch Momentum Methods for Linear Regression Models.
J. Comput. Graph. Stat., 2023

2022
Asymptotic covariance estimation by Gaussian random perturbation.
Comput. Stat. Data Anal., 2022

Link Prediction for Statistical Collaboration Networks Incorporating Institutes and Research Interests.
IEEE Access, 2022

2021
Automatic, dynamic, and nearly optimal learning rate specification via local quadratic approximation.
Neural Networks, 2021

Least-Square Approximation for a Distributed System.
J. Comput. Graph. Stat., 2021

Progressive principle component analysis for compressing deep convolutional neural networks.
Neurocomputing, 2021

Distributed one-step upgraded estimation for non-uniformly and non-randomly distributed data.
Comput. Stat. Data Anal., 2021

2020
Approximate least squares estimation for spatial autoregressive models with covariates.
Comput. Stat. Data Anal., 2020

Semiparametric model for covariance regression analysis.
Comput. Stat. Data Anal., 2020

2019
The magic of <i>danmaku</i>: A social interaction perspective of gift sending on live streaming platforms.
Electron. Commer. Res. Appl., 2019

Estimating Promotion Effects Using Big Data: A Partially Profiled LASSO Model with Endogeneity Correction.
Decis. Sci., 2019

Least Squares Approximation for a Distributed System.
CoRR, 2019

2018
Network linear discriminant analysis.
Comput. Stat. Data Anal., 2018

2015
A high dimensional two-sample test under a low dimensional factor structure.
J. Multivar. Anal., 2015

Testing predictor significance with ultra high dimensional multivariate responses.
Comput. Stat. Data Anal., 2015

2013
A note on tail dependence regression.
J. Multivar. Anal., 2013

Multivariate regression shrinkage and selection by canonical correlation analysis.
Comput. Stat. Data Anal., 2013

2012
A Bayesian information criterion for portfolio selection.
Comput. Stat. Data Anal., 2012

2011
Regression Analysis of Asymmetric Pairs in Large-Scale Network Data.
Commun. Stat. Simul. Comput., 2011

2010
On sparse estimation for semiparametric linear transformation models.
J. Multivar. Anal., 2010

2009
Subgroup Analysis via Recursive Partitioning.
J. Mach. Learn. Res., 2009

2008
A composite logistic regression approach for ordinal panel data regression.
Int. J. Data Anal. Tech. Strateg., 2008

A note on adaptive group lasso.
Comput. Stat. Data Anal., 2008

2007
A note on iterative marginal optimization: a simple algorithm for maximum rank correlation estimation.
Comput. Stat. Data Anal., 2007


  Loading...