Ke Min Zhang

Affiliations:
  • Nanjing University, Department of Mathematics, China


According to our database1, Ke Min Zhang authored at least 31 papers between 1987 and 2009.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2009
The Ramsey number R(C<sub>8</sub>, K<sub>8</sub>).
Discret. Math., 2009

2008
The Ramsey numbers for stars of even order versus a wheel of order nine.
Eur. J. Comb., 2008

2007
New upper bound formulas with parameters for Ramsey numbers.
Discret. Math., 2007

2006
A note on Ramsey numbers with two parameters.
Eur. J. Comb., 2006

The Ramsey numbers of trees versus <i>W</i><sub>6</sub> or <i>W</i><sub>7</sub>.
Eur. J. Comb., 2006

2005
The Ramsey numbers of paths versus wheels.
Discret. Math., 2005

2004
The Ramsey numbers of stars versus wheels.
Eur. J. Comb., 2004

The Ramsey numbers R(T<sub>n</sub>, W<sub>6</sub>) for Delta (T<sub>n</sub>) geq n-3.
Appl. Math. Lett., 2004

2002
Edge-pancyclicity of coupled graphs.
Discret. Appl. Math., 2002

2001
<i>R</i>(C<sub>6</sub>, K<sub>5</sub>) = 21and<i>R</i>(C<sub>7</sub>, K<sub>5</sub>) = 25.
Eur. J. Comb., 2001

An Ore-type Condition for Cyclability.
Eur. J. Comb., 2001

A bound for multicolor Ramsey numbers.
Discret. Math., 2001

A minimum broadcast graph on 26 vertices.
Appl. Math. Lett., 2001

A note on list improper coloring planar graphs.
Appl. Math. Lett., 2001

2000
On Score Sequences of<i>k</i>-Hypertournaments.
Eur. J. Comb., 2000

Pancyclic out-arcs of a Vertex in Tournaments.
Discret. Appl. Math., 2000

On (d, 2)-dominating numbers of binary undirected de Bruijn graphs.
Discret. Appl. Math., 2000

A Sufficient Condition for Oriented Graphs to be Hamiltonian.
Ars Comb., 2000

On the Ramsey number R(C<sub>n</sub> or K<sub>n-1</sub>, K<sub>m</sub>) (m=3, 4).
Australas. J Comb., 2000

On a conjecture involving cycle-complete graph Ramsey numbers.
Australas. J Comb., 2000

1999
Completely Strong Path-Connectivity of Local Tournaments.
Ars Comb., 1999

A sufficient condition for a semicomplete multipartite digraph to be Hamiltonian.
Australas. J Comb., 1999

The value of the Ramsey number R(C<sub>n</sub>, K<sub>4</sub>) is 3(n-1)+1 (n≥4).
Australas. J Comb., 1999

1998
New Upper Bounds for Ramsey Numbers.
Eur. J. Comb., 1998

Edge-face chromatic number of plane graphs with high maximum degree.
Australas. J Comb., 1998

1997
On the Arc-Pancyclicity of Local Tournaments.
Ars Comb., 1997

1996
A new idea for Hamiltonian problem.
Ars Comb., 1996

1994
Complementary cycles containing a fixed arc in diregular bipartite tournaments.
Discret. Math., 1994

Neighborhood unions and Hamiltonian properties.
Discret. Math., 1994

1992
The value of the Ramsey number <i>r</i>(3, 8).
J. Graph Theory, 1992

1987
Longest paths and cycles in bipartite oriented graphs.
J. Graph Theory, 1987


  Loading...