Muhammad Aslam

Orcid: 0000-0003-2290-2307

Affiliations:
  • Bahauddin Zakariya University, Department of Statistics, Multan, Pakistan
  • University of Burgundy Europe (Université de Bourgogne), Insitut de Mathematiques de Bourgogne (IMB), Dijon, France (2011-2012)
  • Bahauddin Zakariya University, Multan, Pakistan (PhD 2006)


According to our database1, Muhammad Aslam authored at least 21 papers between 2013 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Adaptive partial least squares estimation addressing heteroscedasticity and multicollinearity: a Monte Carlo simulation evidence.
Commun. Stat. Simul. Comput., June, 2025

2024
Extending the Liu estimator for the Cox proportional hazards regression model with multicollinearity.
Commun. Stat. Simul. Comput., December, 2024

Robust estimation of the distributed lag model with multicollinearity and outliers.
Commun. Stat. Simul. Comput., August, 2024

A novel Bayesian framework to address unknown heteroscedasticity for the linear regression model.
Commun. Stat. Simul. Comput., March, 2024

2023
New robust ridge estimators for the linear regression model with outliers.
Commun. Stat. Simul. Comput., October, 2023

The Almon M-estimator for the distributed lag model in the presence of outliers.
Commun. Stat. Simul. Comput., July, 2023

An adaptive weighted least squares ratio approach for estimation of heteroscedastic linear regression model in the presence of outliers.
Commun. Stat. Simul. Comput., June, 2023

New quantile based ridge M-estimator for linear regression models with multicollinearity and outliers.
Commun. Stat. Simul. Comput., April, 2023

A robust Kibria-Lukman estimator for linear regression model to combat multicollinearity and outliers.
Concurr. Comput. Pract. Exp., February, 2023

2022
Bayesian estimation of the biasing parameter for ridge regression: A novel approach.
Commun. Stat. Simul. Comput., 2022

The modified Liu-ridge-type estimator: a new class of biased estimators to address multicollinearity.
Commun. Stat. Simul. Comput., 2022

Another proposal about the new two-parameter estimator for linear regression model with correlated regressors.
Commun. Stat. Simul. Comput., 2022

2021
Addressing the distributed lag models with heteroscedastic errors.
Commun. Stat. Simul. Comput., 2021

Influential diagnostics with Pena's statistic for the modified ridge regression.
Commun. Stat. Simul. Comput., 2021

2019
<i>In silico</i> structural and functional characterization and phylogenetic study of alkaline phosphatase in bacterium, <i>Rhizobium leguminosarum</i> (Frank 1879).
Comput. Biol. Chem., 2019

2018
lmridge: A Comprehensive R Package for Ridge Regression.
R J., 2018

2017
liureg: A Comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors.
R J., 2017

2016
mctest: An R Package for Detection of Collinearity among Regressors.
R J., 2016

2014
Using Heteroscedasticity-Consistent Standard Errors for the Linear Regression Model with Correlated Regressors.
Commun. Stat. Simul. Comput., 2014

Performance of Kibria's Method for the Heteroscedastic Ridge Regression Model: Some Monte Carlo Evidence.
Commun. Stat. Simul. Comput., 2014

2013
Efficient Estimation and Robust Inference of Linear Regression Models in the Presence of Heteroscedastic Errors and High Leverage Points.
Commun. Stat. Simul. Comput., 2013


  Loading...