Pramod Kumar Kewat
Orcid: 0000-0002-2483-0960
According to our database1,
Pramod Kumar Kewat
authored at least 26 papers
between 2012 and 2026.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2026
Binary polycyclic codes associated with x2η+1+x2η+1: Hamming distance, duality, reversibility and LCD properties.
Finite Fields Their Appl., 2026
2025
Construction of good CSS quantum codes and QSCs using Whiteman's generalized cyclotomy of order two.
Quantum Inf. Process., November, 2025
Applications of order six cyclotomy to construct CSS quantum codes and quantum synchronizable codes.
Quantum Inf. Process., September, 2025
An Infinite Family of Additive Codes Over the Ring $\frac{\mathbb{F}_2[u]}{\left\langle u^4\right\rangle}$ with Lee Distance 8.
Proceedings of the IEEE International Symposium on Information Theory, 2025
2024
Maximum distance separable repeated-root constacyclic codes over $\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}$ with respect to the Lee distance.
Appl. Algebra Eng. Commun. Comput., July, 2024
Symbol-pair distance of some repeated-root constacyclic codes of length p<sup>s</sup> over the Galois ring ${{\, \mathrm{GR}\, }}(p^a, m)$.
Appl. Algebra Eng. Commun. Comput., 2024
2023
Two classes of few-Lee weight Z2[u]-linear codes using simplicial complexes and minimal codes via Gray map.
Discret. Math., December, 2023
Binary self-dual codes and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Appl. Algebra Eng. Commun. Comput., May, 2023
Proceedings of the IEEE International Symposium on Information Theory, 2023
2022
Lee distance distribution of repeated-root constacyclic codes over $$\hbox {GR}\left( 2^e,m\right) $$ and related MDS codes.
J. Appl. Math. Comput., December, 2022
Self-dual constacyclic codes of length $$2^s$$ over the ring $$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$.
J. Appl. Math. Comput., February, 2022
A class of few-Lee weight Z<sub>2</sub>[u]-linear codes using simplicial complexes and minimal codes via Gray map.
CoRR, 2022
2021
J. Appl. Math. Comput., October, 2021
Lee Distance of (4z - 1)-Constacyclic Codes of Length 2<sup>s</sup> Over the Galois Ring GR(2<sup>a</sup>, m).
IEEE Commun. Lett., 2021
Lee distance of cyclic and (1 + <i>uγ</i>)-constacyclic codes of length 2<sup><i>s</i></sup> over F2m+uF2m.
Discret. Math., 2021
Self-dual codes over ${\mathbb {F}}_2[u]/\langle u^4 \rangle $ and Jacobi forms over a totally real subfield of ${\mathbb {Q}}(\zeta _8)$.
Des. Codes Cryptogr., 2021
2020
Discret. Math., 2020
2019
2-Adic and Linear Complexities of a Class of Whiteman's Generalized Cyclotomic Sequences of Order Four.
Int. J. Found. Comput. Sci., 2019
2017
Cyclic codes from the second class two-prime Whiteman's generalized cyclotomic sequence with order 6.
Cryptogr. Commun., 2017
2015
Cyclic codes over the ring <sub>Z</sub><sub>p</sub>[u, v]/〈u<sup>2</sup>, v<sup>2</sup>, uv-vu〉.
Finite Fields Their Appl., 2015
Des. Codes Cryptogr., 2015
Cyclic codes from the first class two-prime Whiteman's generalized cyclotomic sequence with order 6.
CoRR, 2015
Cyclic codes over the ring $\mathbb{F}_p[u, v, w]/\langle u^2, v^2, w^2, uv-vu, vw-wv, uw-wu \rangle$.
CoRR, 2015
Cyclic codes over the ring 𝔽<sub>p</sub>[u, v] / 〈u<sup>k</sup>, v<sup>2</sup>, uv-vu〉.
CoRR, 2015
2014
2012