Yong Xu

Orcid: 0000-0002-4844-2460

Affiliations:
  • Tsinghua University, State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Beijing, China
  • Frontier Science Center for Quantum Information, Beijing, China
  • Tencent Quantum Lab, Tencent, Shenzhen, Guangdong, China
  • RIKEN Center for Emergent Matter Science, CEMS, Wako, Japan


According to our database1, Yong Xu authored at least 11 papers between 2021 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Author Correction: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation.
Nat. Comput. Sci., November, 2024

Generalizing deep learning electronic structure calculation to the plane-wave basis.
Nat. Comput. Sci., October, 2024

2023
Code for "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian".
Dataset, March, 2023

Dataset3 for "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian".
Dataset, January, 2023

Dataset2 for "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian".
Dataset, January, 2023

Dataset1 for "General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian".
Dataset, January, 2023

Author Correction: Deep-learning electronic-structure calculation of magnetic superstructures.
Nat. Comput. Sci., 2023

Deep-learning electronic-structure calculation of magnetic superstructures.
Nat. Comput. Sci., 2023

2022
Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation.
Nat. Comput. Sci., 2022

2021
Heterogeneous relational message passing networks for molecular dynamics simulations.
CoRR, 2021

Symmetry-adapted graph neural networks for constructing molecular dynamics force fields.
CoRR, 2021


  Loading...