Yuwen Li
Orcid: 0000-0002-4071-8653Affiliations:
- Zhejiang University (ZJU), School of Mathematical Sciences, Hangzhou, China
- Pennsylvania State University, Department of Mathematics, Pennsylvania, PA, USA (former)
- University of California, San Diego, CA, USA (PhD)
According to our database1,
Yuwen Li
authored at least 28 papers
between 2015 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
CoRR, January, 2025
SIAM J. Numer. Anal., 2025
SIAM J. Numer. Anal., 2025
2024
Found. Comput. Math., June, 2024
Comput. Math. Appl., January, 2024
SIAM J. Sci. Comput., 2024
2023
2022
Math. Comput., 2022
Superconvergent Pseudostress-Velocity Finite Element Methods for the Oseen Equations.
J. Sci. Comput., 2022
2021
Quasi-optimal adaptive mixed finite element methods for controlling natural norm errors.
Math. Comput., 2021
J. Sci. Comput., 2021
J. Sci. Comput., 2021
New stabilized P<sub>1</sub>×P<sub>0</sub> finite element methods for nearly inviscid and incompressible flows.
CoRR, 2021
Some continuous and discontinuous Galerkin methods and structure preservation for incompressible flows.
CoRR, 2021
Comput. Math. Appl., 2021
2020
A unified framework of continuous and discontinuous Galerkin methods for solving the incompressible Navier-Stokes equation.
J. Comput. Phys., 2020
2019
Some Convergence and Optimality Results of Adaptive Mixed Methods in Finite Element Exterior Calculus.
SIAM J. Numer. Anal., 2019
Superconvergent Recovery of Raviart-Thomas Mixed Finite Elements on Triangular Grids.
J. Sci. Comput., 2019
Residual-based a posteriori error estimates of mixed methods in Biot's consolidation model.
CoRR, 2019
Quasi-optimal adaptive hybridized mixed finite element methods for linear elasticity.
CoRR, 2019
2018
Global Superconvergence of the Lowest-Order Mixed Finite Element on Mildly Structured Meshes.
SIAM J. Numer. Anal., 2018
2016
Exponential Integrators Preserving First Integrals or Lyapunov Functions for Conservative or Dissipative Systems.
SIAM J. Sci. Comput., 2016
Functionally Fitted Energy-Preserving Methods for Solving Oscillatory Nonlinear Hamiltonian Systems.
SIAM J. Numer. Anal., 2016
2015
General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs.
J. Comput. Phys., 2015