David Anugraha

According to our database1, David Anugraha authored at least 12 papers between 2024 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2025
IndoPref: A Multi-Domain Pairwise Preference Dataset for Indonesian.
CoRR, July, 2025

Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability.
CoRR, June, 2025

R3: Robust Rubric-Agnostic Reward Models.
CoRR, May, 2025

Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
CoRR, March, 2025


ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models.
Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April 29, 2025

MetaMetrics: Calibrating Metrics for Generation Tasks Using Human Preferences.
Proceedings of the Thirteenth International Conference on Learning Representations, 2025

URIEL+: Enhancing Linguistic Inclusion and Usability in a Typological and Multilingual Knowledge Base.
Proceedings of the 31st International Conference on Computational Linguistics, 2025

Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2025

2024
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines.
CoRR, 2024

MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Preference Calibration.
Proceedings of the Ninth Conference on Machine Translation, 2024

Predicting Machine Translation Performance on Low-Resource Languages: The Role of Domain Similarity.
Proceedings of the Findings of the Association for Computational Linguistics: EACL 2024, 2024


  Loading...