David J. W. Simpson
Orcid: 0000-0002-0284-6283Affiliations:
- Massey University, Institute of Fundamental Sciences, Palmerston North, New Zealand
According to our database1,
David J. W. Simpson
authored at least 23 papers
between 2008 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
Robust Chaos in Orientation-Reversing and Non-Invertible Two-Dimensional Piecewise-Linear Maps.
J. Nonlinear Sci., February, 2025
Boundary Equilibrium Bifurcations Creating Multiple Limit Cycles in Impacting Hybrid Systems.
SIAM J. Appl. Dyn. Syst., 2025
SIAM J. Appl. Dyn. Syst., 2025
2024
The bifurcation structure within robust chaos for two-dimensional piecewise-linear maps.
Commun. Nonlinear Sci. Numer. Simul., 2024
2023
A Synopsis of the Noninvertible, Two-Dimensional, Border-Collision Normal Form with Applications to Power Converters.
Int. J. Bifurc. Chaos, June, 2023
SIAM J. Appl. Math., April, 2023
2022
Int. J. Bifurc. Chaos, 2022
Chaos in the border-collision normal form: A computer-assisted proof using induced maps and invariant expanding cones.
Appl. Math. Comput., 2022
2020
Unfolding Codimension-Two Subsumed Homoclinic Connections in Two-Dimensional Piecewise-Linear Maps.
Int. J. Bifurc. Chaos, 2020
2019
Australas. J Comb., 2019
2018
Jitter in Piecewise-Smooth Dynamical Systems with Intersecting Discontinuity Surfaces.
Int. J. Bifurc. Chaos, 2018
2017
Subsumed Homoclinic Connections and Infinitely Many Coexisting Attractors in Piecewise-Linear Maps.
Int. J. Bifurc. Chaos, 2017
Int. J. Bifurc. Chaos, 2017
2016
2015
Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters.
J. Integr. Bioinform., 2015
2014
Scaling Laws for Large Numbers of Coexisting Attracting Periodic Solutions in the Border-Collision Normal Form.
Int. J. Bifurc. Chaos, 2014
Sequences of Periodic Solutions and Infinitely Many Coexisting Attractors in the Border-Collision Normal Form.
Int. J. Bifurc. Chaos, 2014
On the relative coexistence of fixed points and period-two solutions near border-collision bifurcations.
Appl. Math. Lett., 2014
2013
2012
J. Nonlinear Sci., 2012
2008
SIAM J. Appl. Dyn. Syst., 2008