Jae-Yeul Kim

Orcid: 0000-0002-7765-4972

According to our database1, Jae-Yeul Kim authored at least 16 papers between 2020 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
A Training-Free Style-Personalization via Scale-wise Autoregressive Model.
CoRR, July, 2025

Bridging Geometric and Semantic Foundation Models for Generalized Monocular Depth Estimation.
CoRR, May, 2025

Flow4D: Leveraging 4D Voxel Network for LiDAR Scene Flow Estimation.
IEEE Robotics Autom. Lett., April, 2025

A Training-Free Style-aligned Image Generation with Scale-wise Autoregressive Model.
CoRR, April, 2025

2024
Density-aware Domain Generalization for LiDAR Semantic Segmentation.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2024

Rethinking LiDAR Domain Generalization: Single Source as Multiple Density Domains.
Proceedings of the Computer Vision - ECCV 2024, 2024

2023
Domain Generalization in LiDAR Semantic Segmentation Leveraged by Density Discriminative Feature Embedding.
CoRR, 2023

MSF-NET: Foreground Objects Detection With Fusion of Motion and Semantic Features.
IEEE Access, 2023

Automatic Extrinsic Calibration of a Camera and a 2D LiDAR With Point-Line Correspondences.
IEEE Access, 2023

2022
RVMOS: Range-View Moving Object Segmentation Leveraged by Semantic and Motion Features.
IEEE Robotics Autom. Lett., 2022

Foreground Object Detection in Visual Surveillance With Spatio-Temporal Fusion Network.
IEEE Access, 2022

Weakly Supervised Foreground Object Detection Network Using Background Model Image.
IEEE Access, 2022

2021
Spatio-Temporal Data Augmentation for Visual Surveillance.
IEEE Access, 2021

Generation of Background Model Image Using Foreground Model.
IEEE Access, 2021

2020
Extrinsic Calibration of a Camera and a 2D LiDAR Using a Dummy Camera With IR Cut Filter Removed.
IEEE Access, 2020

Foreground Objects Detection Using a Fully Convolutional Network With a Background Model Image and Multiple Original Images.
IEEE Access, 2020


  Loading...