Nazim I. Mahmudov
Orcid: 0000000339431732Affiliations:
 Eastern Mediterranean University, Department of Mathematics
According to our database^{1},
Nazim I. Mahmudov
authored at least 43 papers
between 2001 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:

on zbmath.org

on orcid.org
On csauthors.net:
Bibliography
2024
A novel delayed discrete fractional MittagLeffler function: representation and stability of delayed fractional difference system.
J. Appl. Math. Comput., April, 2024
Math. Comput. Simul., March, 2024
Int. J. Control, February, 2024
Wellposedness and EulerMaruyama approximation for stochastic fractional neutral integrodifferential equations with weakly singular kernel and generalized Gronwall inequality with a multi weakly singularity.
CoRR, 2024
2023
Axioms, August, 2023
2022
A novel technique for solving Sobolevtype fractional multiorder evolution equations.
Comput. Appl. Math., March, 2022
J. Frankl. Inst., 2022
Analytical Solution of the Fractional Linear TimeDelay Systems and their UlamHyers Stability.
J. Appl. Math., 2022
2021
Strong convergence of a EulerMaruyama method for fractional stochastic Langevin equations.
Math. Comput. Simul., 2021
Langevin differential equations with general fractional orders and their applications to electric circuit theory.
J. Comput. Appl. Math., 2021
Trivariate MittagLeffler functions used to solve multiorder systems of fractional differential equations.
Commun. Nonlinear Sci. Numer. Simul., 2021
Explicit analytical solutions of incommensurate fractional differential equation systems.
Appl. Math. Comput., 2021
2020
Variational Approach to FiniteApproximate Controllability of SobolevType Fractional Systems.
J. Optim. Theory Appl., 2020
Appl. Math. Lett., 2020
2019
Necessary FirstOrder and SecondOrder Optimality Conditions in DiscreteTime Stochastic Systems.
J. Optim. Theory Appl., 2019
Appl. Math. Lett., 2019
2018
Representation of solutions of discrete linear delay systems with non permutable matrices.
Appl. Math. Lett., 2018
Partialapproximate controllability of nonlocal fractional evolution equations via approximating method.
Appl. Math. Comput., 2018
2015
Int. J. Control, 2015
Appl. Math. Comput., 2015
2014
On the approximate controllability of fractional evolution equations with compact analytic semigroup.
J. Comput. Appl. Math., 2014
J. Appl. Math., 2014
Appl. Math. Comput., 2014
Appl. Math. Comput., 2014
2013
Math. Comput. Model., 2013
J. Glob. Optim., 2013
Approximate Controllability of Fractional Integrodifferential Evolution Equations.
J. Appl. Math., 2013
2012
Math. Comput. Model., 2012
J. Appl. Math., 2012
Controllability for a class of fractionalorder neutral evolution control systems.
Appl. Math. Comput., 2012
2011
J. Comput. Appl. Math., 2011
Comput. Math. Appl., 2011
Asymptotic properties of powers of linear positive operators which preserve e<sub>2</sub>.
Comput. Math. Appl., 2011
Appl. Math. Lett., 2011
Appl. Math. Comput., 2011
2010
Numer. Algorithms, 2010
Comput. Math. Appl., 2010
Comput. Math. Appl., 2010
Appl. Math. Lett., 2010
2009
Int. J. Control, 2009
2007
Int. J. Control, 2007
2003
Approximate Controllability of Semilinear Deterministic and Stochastic Evolution Equations in Abstract Spaces.
SIAM J. Control. Optim., 2003
2001
IEEE Trans. Autom. Control., 2001