Willem H. Haemers

According to our database1, Willem H. Haemers authored at least 52 papers between 1979 and 2020.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2020
Cospectral pairs of regular graphs with different connectivity.
Discuss. Math. Graph Theory, 2020

On NP-hard graph properties characterized by the spectrum.
Discret. Appl. Math., 2020

On sign-symmetric signed graphs.
Ars Math. Contemp., 2020

2019
Spectral characterization of mixed extensions of small graphs.
Discret. Math., 2019

Graph switching, 2-ranks, and graphical Hadamard matrices.
Discret. Math., 2019

The graphs cospectral with the pineapple graph.
Discret. Appl. Math., 2019

On the Spectral Characterization of Mixed Extensions of P<sub>3</sub>.
Electron. J. Comb., 2019

2017
The graphs with all but two eigenvalues equal to -2 or 0.
Des. Codes Cryptogr., 2017

Preface to the special issue dedicated to Andries E. Brouwer.
Des. Codes Cryptogr., 2017

2016
Switched symplectic graphs and their 2-ranks.
Des. Codes Cryptogr., 2016

2015
Cospectral regular graphs with and without a perfect matching.
Discret. Math., 2015

2014
Regular graphs with maximal energy per vertex.
J. Comb. Theory, Ser. B, 2014

Walk-regular divisible design graphs.
Des. Codes Cryptogr., 2014

Spectral characterizations of almost complete graphs.
Discret. Appl. Math., 2014

2012
The maximum order of adjacency matrices of graphs with a given rank.
Des. Codes Cryptogr., 2012

The graph with spectrum 141 240 (-4)10 (-6)9.
Des. Codes Cryptogr., 2012

Cospectral Graphs and Regular Orthogonal Matrices of Level 2.
Electron. J. Comb., 2012

2011
Matrices for graphs, designs and codes.
Proceedings of the Information Security, Coding Theory and Related Combinatorics, 2011

Divisible design graphs.
J. Comb. Theory, Ser. A, 2011

An odd characterization of the generalized odd graphs.
J. Comb. Theory, Ser. B, 2011

2010
Strongly regular graphs with parameters (4m<sup>4</sup>, 2m<sup>4</sup>+m<sup>2</sup>, m<sup>4</sup>+m<sup>2</sup>, m<sup>4</sup>+m<sup>2</sup>) exist for all m>1.
Eur. J. Comb., 2010

Preface: Geometric and Algebraic Combinatorics.
Eur. J. Comb., 2010

2009
Matchings in regular graphs from eigenvalues.
J. Comb. Theory, Ser. B, 2009

Developments on spectral characterizations of graphs.
Discret. Math., 2009

2007
Geometric and algebraic combinatorics.
Eur. J. Comb., 2007

On 3-chromatic distance-regular graphs.
Des. Codes Cryptogr., 2007

2006
Characterizing distance-regularity of graphs by the spectrum.
J. Comb. Theory, Ser. A, 2006

5-chromatic strongly regular graphs.
Discret. Math., 2006

Self-dual, not self-polar.
Discret. Math., 2006

2005
Preface.
Des. Codes Cryptogr., 2005

2004
Enumeration of cospectral graphs.
Eur. J. Comb., 2004

Johan Jacob Seidel 1919-2001.
Eur. J. Comb., 2004

2001
Bicliques and Eigenvalues.
J. Comb. Theory, Ser. B, 2001

The Pseudo-geometric Graphs for Generalized Quadrangles of Order (3, <i>t</i>).
Eur. J. Comb., 2001

2000
The Search for Pseudo Orthogonal Latin Squares of Order Six.
Des. Codes Cryptogr., 2000

1999
Minimum resolvable coverings with small parallel classes.
Discret. Math., 1999

Binary Codes of Strongly Regular Graphs.
Des. Codes Cryptogr., 1999

1998
Graphs with constant µ and µ_.
Discret. Math., 1998

1997
Disconnected Vertex Sets and Equidistant Code Pairs.
Electron. J. Comb., 1997

1996
Spreads in Strongly Regular Graphs.
Des. Codes Cryptogr., 1996

1995
Quasi-Symmetric Designs Related to the Triangular Graph.
Des. Codes Cryptogr., 1995

1993
A Design and a Code Invariant under the Simple Group Co<sub>3</sub>.
J. Comb. Theory, Ser. A, 1993

The Gewirtz Graph: An Exercise in the Theory of Graph Spectra.
Eur. J. Comb., 1993

1992
Some 2-ranks.
Discret. Math., 1992

Structure and uniqueness of the (81, 20, 1, 6) strongly regular graph.
Discret. Math., 1992

1991
Divisible designs with <i>r</i>-lambda<sub>1</sub> = 1.
J. Comb. Theory, Ser. A, 1991

Regular 2-Graphs and Extensions of Partial Geometries.
Eur. J. Comb., 1991

1989
On (<i>v</i>, <i>k</i>, lambda) graphs and designs with trivial automorphism group.
J. Comb. Theory, Ser. A, 1989

A (49, 16, 3, 6) Strongly Regular Graph Does Not Exist.
Eur. J. Comb., 1989

1985
Access Control at the Netherlands Postal and Telecommunications Services.
Proceedings of the Advances in Cryptology, 1985

1984
A Contribution to the Techniques of Traffic Engineering in Communications Networks With Waiting Facilities.
Proceedings of the IEEE International Conference on Communications: Links for the Future, 1984

1979
On Some Problems of Lovász Concerning the Shannon Capacity of a Graph.
IEEE Trans. Inf. Theory, 1979


  Loading...