William T. Taitano

Orcid: 0000-0002-2369-0935

According to our database1, William T. Taitano authored at least 16 papers between 2013 and 2022.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2022
An asymptotic-preserving 2D-2P relativistic drift-kinetic-equation solver for runaway electron simulations in axisymmetric tokamaks.
J. Comput. Phys., 2022

2021
An Eulerian Vlasov-Fokker-Planck algorithm for spherical implosion simulations of inertial confinement fusion capsules.
Comput. Phys. Commun., 2021

A conservative phase-space moving-grid strategy for a 1D-2V Vlasov-Fokker-Planck Solver.
Comput. Phys. Commun., 2021

2020
An efficient, conservative, time-implicit solver for the fully kinetic arbitrary-species 1D-2V Vlasov-Ampère system.
J. Comput. Phys., 2020

A fully implicit, scalable, conservative nonlinear relativistic Fokker-Planck 0D-2P solver for runaway electrons.
Comput. Phys. Commun., 2020

2018
An adaptive, implicit, conservative, 1D-2V multi-species Vlasov-Fokker-Planck multi-scale solver in planar geometry.
J. Comput. Phys., 2018

2017
An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry.
J. Comput. Phys., 2017

Multiscale high-order/low-order (HOLO) algorithms and applications.
J. Comput. Phys., 2017

2016
An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes.
J. Comput. Phys., 2016

2015
Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part II: Collisional aspects.
J. Comput. Phys., 2015

A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation.
J. Comput. Phys., 2015

Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects.
J. Comput. Phys., 2015

2014
Leveraging Anderson Acceleration for improved convergence of iterative solutions to transport systems.
J. Comput. Phys., 2014

Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations.
J. Comput. Phys., 2014

Computational Co-design of a Multiscale Plasma Application: A Process and Initial Results.
Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 2014

2013
Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System.
SIAM J. Sci. Comput., 2013


  Loading...