Florian Faucher

Orcid: 0000-0003-4958-7511

According to our database1, Florian Faucher authored at least 13 papers between 2016 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0
1
2
3
4
5
1
4
2
2
1
1
1
1

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2025
Enriching continuous Lagrange finite element approximation spaces using neural networks.
CoRR, February, 2025

2024
WaveBench: Benchmarking Data-driven Solvers for Linear Wave Propagation PDEs.
Trans. Mach. Learn. Res., 2024

Assembling algorithm for Green's tensors and absorbing boundary conditions for Galbrun's equation in radial symmetry.
J. Comput. Phys., 2024

Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation.
J. Comput. Phys., 2024

Numerical investigation of stabilization in the Hybridizable Discontinuous Galerkin method for linear anisotropic elastic equation.
CoRR, 2024

2023
Quantitative inverse problem in visco-acoustic media under attenuation model uncertainty.
J. Comput. Phys., 2023

Fine-tuning Neural-Operator architectures for training and generalization.
CoRR, 2023

2021
hawen: time-harmonic wave modeling and inversion using hybridizable discontinuous Galerkin discretization.
J. Open Source Softw., 2021

Diffraction Tomography, Fourier Reconstruction, and Full Waveform Inversion.
CoRR, 2021

2020
Efficient and Accurate Algorithm for the Full Modal Green's Kernel of the Scalar Wave Equation in Helioseismology.
SIAM J. Appl. Math., 2020

2018
Localization of small obstacles from back-scattered data at limited incident angles with full-waveform inversion.
J. Comput. Phys., 2018

2017
Contributions to Seismic Full Waveform Inversion for Time Harmonic Wave Equations: Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms. (Contribution à l'imagerie sismique par inversion des formes d'onde pour les équations d'ondes harmoniques: estimation de stabilité, analyse de convergence, expériences numériques utilisant des algorithmes d'optimisation à grande échelle).
PhD thesis, 2017

2016
Inverse Boundary Value Problem For The Helmholtz Equation: Quantitative Conditional Lipschitz Stability Estimates.
SIAM J. Math. Anal., 2016


  Loading...