Junhao Wen

Orcid: 0000-0003-2077-3070

Affiliations:
  • Columbia University, New York, NY, USA


According to our database1, Junhao Wen authored at least 39 papers between 2018 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Interpretable deep clustering survival machines for Alzheimer's disease subtype discovery.
Medical Image Anal., 2024

Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning.
CoRR, 2024

Multiscale Estimation of Morphometricity for Revealing Neuroanatomical Basis of Cognitive Traits.
Proceedings of the IEEE International Symposium on Biomedical Imaging, 2024

Mutually-Constrained Cross-Sectional and Longitudinal Non-Negative Matrix Factorization: Application to Modeling Brain Aging Trajectories.
Proceedings of the IEEE International Symposium on Biomedical Imaging, 2024

2023
Brain-wide genome-wide colocalization study for integrating genetics, transcriptomics and brain morphometry in Alzheimer's disease.
NeuroImage, October, 2023

Multiscale functional connectivity patterns of the aging brain learned from harmonized rsfMRI data of the multi-cohort iSTAGING study.
NeuroImage, April, 2023

Applications of generative adversarial networks in neuroimaging and clinical neuroscience.
NeuroImage, April, 2023

Gene-SGAN: a method for discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering.
CoRR, 2023

Shape analysis of amygdala atrophy using SPHARM-OT.
Proceedings of the Medical Imaging 2023: Image Processing, 2023

2022
nipy/nipype: 1.8.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, July, 2022

nipy/nipype: 1.8.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2022

nipy/nipype: 1.8.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, May, 2022

nipy/nipype: 1.7.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, April, 2022

Multi-scale semi-supervised clustering of brain images: Deriving disease subtypes.
Medical Image Anal., 2022

Subtyping brain diseases from imaging data.
CoRR, 2022

Surreal-GAN: Semi-Supervised Representation Learning via GAN for uncovering heterogeneous disease-related imaging patterns.
Proceedings of the Tenth International Conference on Learning Representations, 2022

Preference Matrix Guided Sparse Canonical Correlation Analysis for Genetic Study of Quantitative Traits in Alzheimer's Disease.
Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, 2022

2021
nipy/nipype: 1.7.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, October, 2021

Reproducible Evaluation of Diffusion MRI Features for Automatic Classification of Patients with Alzheimer's Disease.
Neuroinformatics, 2021

Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review.
Medical Image Anal., 2021

Clinica: An Open-Source Software Platform for Reproducible Clinical Neuroscience Studies.
Frontiers Neuroinformatics, 2021

Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics.
CoRR, 2021

Disentangling brain heterogeneity via semi-supervised deep-learning and MRI: dimensional representations of Alzheimer's Disease.
CoRR, 2021

2020
nipy/nipype: 1.5.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2020

nipy/nipype: 1.5.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, June, 2020

nipy/nipype: 1.4.2.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, February, 2020

nipy/nipype: 1.4.1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, January, 2020

Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.
Medical Image Anal., 2020

Smile-GANs: Semi-supervised clustering via GANs for dissecting brain disease heterogeneity from medical images.
CoRR, 2020

MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain Diseases.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, 2020

2019
nipy/nipype: 1.4.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, December, 2019

nipy/nipype: 1.3.0.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2019

nipy/nipype: 1.3.0-rc1.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, October, 2019

nipy/nipype: 1.2.3.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2019

Convolutional Neural Networks for Classification of Alzheimer's Disease: Overview and Reproducible Evaluation.
CoRR, 2019

2018
Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.
NeuroImage, 2018

An Automated Pipeline for the Analysis of PET Data on the Cortical Surface.
Frontiers Neuroinformatics, 2018

Reproducible evaluation of diffusion MRI features for automatic classification of patients with Alzheimers disease.
CoRR, 2018

Reproducible evaluation of classification methods in Alzheimer's disease: framework and application to MRI and PET data.
CoRR, 2018


  Loading...