Kerry Cawse-Nicholson
Orcid: 0000-0002-0510-4066Affiliations:
- Rochester Institute of Technology, NY, USA
  According to our database1,
  Kerry Cawse-Nicholson
  authored at least 27 papers
  between 2010 and 2024.
  
  
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
- 
    on orcid.org
On csauthors.net:
Bibliography
  2024
Uncertainty quantification for probabilistic machine learning in earth observation using conformal prediction.
    
  
    CoRR, 2024
    
  
  2023
    Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2023
    
  
European Ecostress Hub Phase 2: Thermal Infrared Remote Sensing Of Terrestrial Ecosystem Processes.
    
  
    Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2023
    
  
  2022
Validation and Quality Assessment of the ECOSTRESS Level-2 Land Surface Temperature and Emissivity Product.
    
  
    IEEE Trans. Geosci. Remote. Sens., 2022
    
  
Using ECOSTRESS to Observe and Model Diurnal Variability in Water Temperature Conditions in the San Francisco Estuary.
    
  
    IEEE Trans. Geosci. Remote. Sens., 2022
    
  
    Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2022
    
  
  2021
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2021
    
  
    Remote. Sens., 2021
    
  
    Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2021
    
  
  2020
In-Flight Validation of the ECOSTRESS, Landsats 7 and 8 Thermal Infrared Spectral Channels Using the Lake Tahoe CA/NV and Salton Sea CA Automated Validation Sites.
    
  
    IEEE Trans. Geosci. Remote. Sens., 2020
    
  
Sensitivity and uncertainty quantification for the ECOSTRESS evapotranspiration algorithm - DisALEXI.
    
  
    Int. J. Appl. Earth Obs. Geoinformation, 2020
    
  
    Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2020
    
  
    Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020
    
  
  2019
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2019
    
  
Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites.
    
  
    Remote. Sens., 2019
    
  
  2017
Multiview Marker-Free Registration of Forest Terrestrial Laser Scanner Data With Embedded Confidence Metrics.
    
  
    IEEE Trans. Geosci. Remote. Sens., 2017
    
  
  2016
Marker-Free Registration of Forest Terrestrial Laser Scanner Data Pairs With Embedded Confidence Metrics.
    
  
    IEEE Trans. Geosci. Remote. Sens., 2016
    
  
  2015
Estimation of the Intrinsic Dimension of Hyperspectral Images: Comparison of Current Methods.
    
  
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2015
    
  
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2015
    
  
  2014
Extracting Structural Vegetation Components From Small-Footprint Waveform Lidar for Biomass Estimation in Savanna Ecosystems.
    
  
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2014
    
  
  2013
Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory.
    
  
    IEEE Trans. Image Process., 2013
    
  
The Effect of Correlation on Determining the Intrinsic Dimension of a Hyperspectral Image.
    
  
    IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2013
    
  
    Proceedings of the 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2013
    
  
Enhancing classification accuracy via registration of discrete return LiDAR and aerial imagery using the Levenberg-Marquardt nonlinear optimization method.
    
  
    Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, 2013
    
  
  2012
The effect of spectrally correlated noise on noise estimation methods for hyperspectral images.
    
  
    Proceedings of the 4th Workshop on Hyperspectral Image and Signal Processing, 2012
    
  
  2011
The effect of noise whitening on methods for determining the intrinsic dimension of a hyperspectral image.
    
  
    Proceedings of the 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2011
    
  
  2010
Using Random Matrix Theory to determine the number of endmembers in a hyperspectral image.
    
  
    Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010