Sujit Kumar De
According to our database1,
Sujit Kumar De
authored at least 17 papers
between 2006 and 2021.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis OtherLinks
On csauthors.net:
Bibliography
2021
Solution of an imperfect-quality EOQ model with backorder under fuzzy lock leadership game approach.
Int. J. Intell. Syst., 2021
2020
A production inventory supply chain model with partial backordering and disruption under triangular linguistic dense fuzzy lock set approach.
Soft Comput., 2020
A Study of a Backorder EOQ Model for Cloud-Type Intuitionistic Dense Fuzzy Demand Rate.
Int. J. Fuzzy Syst., 2020
Solution of an EPQ model for imperfect production process under game and neutrosophic fuzzy approach.
Appl. Soft Comput., 2020
2019
J. Intell. Fuzzy Syst., 2019
Nonlinear Triangular Intuitionistic Fuzzy Number and Its Application in Linear Integral Equation.
Adv. Fuzzy Syst., 2019
2018
The (<i>p</i>, <i>q</i>, <i>r</i>, <i>l</i>) model for stochastic demand under Intuitionistic fuzzy aggregation with Bonferroni mean.
J. Intell. Manuf., 2018
Two-layer supply chain model for Cauchy-type stochastic demand under fuzzy environment.
Int. J. Intell. Comput. Cybern., 2018
Proceedings of the Mathematics and Computing - 4th International Conference, 2018
2016
J. Intell. Fuzzy Syst., 2016
2015
Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach.
Ann. Oper. Res., 2015
2014
A multi-periods production-inventory model with capacity constraints for multi-manufacturers - A global optimality in intuitionistic fuzzy environment.
Appl. Math. Comput., 2014
An interpolating by pass to Pareto optimality in intuitionistic fuzzy technique for a EOQ model with time sensitive backlogging.
Appl. Math. Comput., 2014
2012
Fuzzy EOQ models with ramp type demand rate, partial backlogging and time dependent deterioration rate.
Int. J. Math. Oper. Res., 2012
2006
An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible.
Int. J. Syst. Sci., 2006