Yunfei Li
Orcid: 0000-0003-1734-5008
According to our database1,
Yunfei Li
authored at least 16 papers
between 2019 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
Low-Rank and Sparse Representation Meet Deep Unfolding: A New Interpretable Network for Hyperspectral Change Detection.
IEEE Trans. Geosci. Remote. Sens., 2025
Combining Filling and Fusion Strategies for Generating Synthetic Daily Landsat Time Series Image on Google Earth Engine.
IEEE Trans. Geosci. Remote. Sens., 2025
HSACT: A hierarchical semantic-aware CNN-Transformer for remote sensing image spectral super-resolution.
Neurocomputing, 2025
2024
A Novel Multiplatform Spatiotempoal Data Fusion Approach for Remote Sensing Imagery Based on Parameter Selection.
IEEE Trans. Geosci. Remote. Sens., 2024
Large-scale and high-resolution paddy rice intensity mapping using downscaling and phenology-based algorithms on Google Earth Engine.
Int. J. Appl. Earth Obs. Geoinformation, 2024
Int. J. Appl. Earth Obs. Geoinformation, 2024
2023
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2023
Removing Influence of MODIS Strip Noise in Spatiotemporal Fusion of Remote Sensing Imagery.
IEEE Geosci. Remote. Sens. Lett., 2023
2022
IEEE Trans. Geosci. Remote. Sens., 2022
IEEE Trans. Geosci. Remote. Sens., 2022
Fusing Sentinel-2 and Landsat-8 Surface Reflectance Data via Pixel-Wise Local Normalization.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2022
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2022
2021
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2021
2020
A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks.
Sci. China Inf. Sci., 2020
Sci. China Inf. Sci., 2020
2019
A New Spatio-Temporal Fusion Method for Remotely Sensed Data Based on Convolutional Neural Networks.
Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019