Daniel Matthes

Orcid: 0000-0001-9348-585X

Affiliations:
  • Technical University Munich, Germany


According to our database1, Daniel Matthes authored at least 18 papers between 2006 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
A structure preserving discretization for the Derrida-Lebowitz-Speer-Spohn equation based on diffusive transport.
Numerische Mathematik, August, 2025

SoccerNet 2025 Challenges Results.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
CoRR, August, 2025

The spatially discrete to continuous limit in the nonlocal quantum diffusion equation.
CoRR, February, 2025

Diffusive transport on the real line: semi-contractive gradient flows and their discretization.
CoRR, January, 2025

DySpect-Net: Neural Network Predicting Spectrum From Non-Uniformly Sampled Data.
IEEE Access, 2025

2024
Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals.
CoRR, 2024

Solution of the Björling problem by discrete approximation.
CoRR, 2024

2022
Entropic transfer operators.
CoRR, 2022

2021
The Waiting Time Phenomenon in Spatially Discretized Porous Medium and Thin Film Equations.
SIAM J. Numer. Anal., 2021

Barycenters for the Hellinger-Kantorovich Distance Over ℝ<sup>d</sup>.
SIAM J. Math. Anal., 2021

2020
Discretization of flux-limited gradient flows: Γ-convergence and numerical schemes.
Math. Comput., 2020

Lagrangian schemes for Wasserstein gradient flows.
CoRR, 2020

2018
A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes.
J. Sci. Comput., 2018

2017
A Fully Discrete Variational Scheme for Solving Nonlinear Fokker-Planck Equations in Multiple Space Dimensions.
SIAM J. Numer. Anal., 2017

A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation.
Found. Comput. Math., 2017

2014
Asymptotic Behavior of Gradient Flows Driven by Nonlocal Power Repulsion and Attraction Potentials in One Dimension.
SIAM J. Math. Anal., 2014

2008
The Derrida-Lebowitz-Speer-Spohn Equation: Existence, NonUniqueness, and Decay Rates of the Solutions.
SIAM J. Math. Anal., 2008

2006
Derivation of New Quantum Hydrodynamic Equations Using Entropy Minimization.
SIAM J. Appl. Math., 2006


  Loading...