Thomas W. Tucker

According to our database1, Thomas W. Tucker authored at least 47 papers between 1977 and 2020.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of two.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Other 

Links

Homepages:

On csauthors.net:

Bibliography

2020
Distinguishing index of maps.
Eur. J. Comb., 2020

Partial duality for ribbon graphs, I: Distributions.
Eur. J. Comb., 2020

Making the Invisible Visible: Illuminating the Hidden Histories of the World War I Tunnels at Vauquois Through a Hybridized Virtual Reality Exhibition.
IEEE Computer Graphics and Applications, 2020

2019
Distinguishing Graphs of Maximum Valence 3.
Electron. J. Comb., 2019

2018
Virtual replicas of real places: Experimental investigations.
CoRR, 2018

Calculating genus polynomials via string operations and matrices.
Ars Math. Contemp., 2018

Experiencing an Invisible World War I Battlefield Through Narrative-Driven Redirected Walking in Virtual Reality.
Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, 2018

2017
Bipartite Polyhedral Maps on Closed Surfaces are Distinguishing 3-Colorable with Few Exceptions.
Graphs Comb., 2017

Distinguishing Cartesian products of countable graphs.
Discuss. Math. Graph Theory, 2017

Valence-partitioned genus polynomials and their application to generalized dipoles.
Australas. J Comb., 2017

2016
Combinatorial conjectures that imply local log-concavity of graph genus polynomials.
Eur. J. Comb., 2016

Iterated claws have real-rooted genus polynomials.
Ars Math. Contemp., 2016

2015
Log-Concavity of Combinations of Sequences and Applications to Genus Distributions.
SIAM J. Discret. Math., 2015

Log-concavity of the genus polynomials of Ringel Ladders.
Electron. J. Graph Theory Appl., 2015

CI-Spy: Designing A Mobile Augmented Reality System for Scaffolding Historical Inquiry Learning.
Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, 2015

2014
Representativity of Cayley maps.
Eur. J. Comb., 2014

Log-concavity of genus distributions of ring-like families of graphs.
Eur. J. Comb., 2014

On the Maximum Number of Independent Elements in Configurations of Points and Lines.
Discret. Comput. Geom., 2014

The Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of Large Scale Computing Systems and Applications.
Proceedings of the International Conference for High Performance Computing, 2014

2013
Distinguishing Maps II: General Case.
Electron. J. Comb., 2013

2012
Distinguishability of Infinite Groups and Graphs.
Electron. J. Comb., 2012

2011
A Celtic Framework for Knots and Links.
Discret. Comput. Geom., 2011

Distinguishing Maps.
Electron. J. Comb., 2011

Edge-transitive maps of low genus.
Ars Math. Contemp., 2011

The symmetric genus spectrum of finite groups.
Ars Math. Contemp., 2011

Motion and distinguishing number two.
Ars Math. Contemp., 2011

2009
On the cover of this journal.
Ars Math. Contemp., 2009

2008
Locally finite graphs and embeddings.
Electron. Notes Discret. Math., 2008

2007
Characterization of graphs which admit vertex-transitive embeddings.
J. Graph Theory, 2007

Regular t-balanced Cayley maps.
J. Comb. Theory, Ser. B, 2007

2005
Cayley maps.
J. Comb. Theory, Ser. B, 2005

2004
Straight-ahead walks in Eulerian graphs.
Discret. Math., 2004

2003
Topological Graph Theory.
Proceedings of the Handbook of Graph Theory., 2003

2002
Strongly adjacency-transitive graphs and uniquely shift-transitive graphs.
Discret. Math., 2002

Growth in products of graphs.
Australas. J Comb., 2002

2001
Realizing finite edge-transitive orientable maps.
J. Graph Theory, 2001

1995
Stratified graphs for imbedding systems.
Discret. Math., 1995

1992
The non-orientable genus of some metacyclic groups.
Comb., 1992

1989
Genus distributions for bouquets of circles.
J. Comb. Theory, Ser. B, 1989

The Genus of the Product of a Group with an Abelian Group.
Eur. J. Comb., 1989

The genus of low rank hamiltonian groups.
Discret. Math., 1989

1984
On proulx's four exceptional toroidal groups.
J. Graph Theory, 1984

There is one group of genus two.
J. Comb. Theory, Ser. B, 1984

A refined Hurwitz theorem for imbeddings of irredundant Cayley graphs.
J. Comb. Theory, Ser. B, 1984

1983
Finite groups acting on surfaces and the genus of a group.
J. Comb. Theory, Ser. B, 1983

1981
Some results on the genus of a group.
J. Graph Theory, 1981

1977
Generating all graph coverings by permutation voltage assignments.
Discret. Math., 1977


  Loading...