Benedikt Mersch

Orcid: 0000-0002-6937-2799

According to our database1, Benedikt Mersch authored at least 16 papers between 2021 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds.
IEEE Trans. Robotics, 2024

Generalizable Stable Points Segmentation for 3D LiDAR Scan-to-Map Long-Term Localization.
IEEE Robotics Autom. Lett., 2024

Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion.
CoRR, 2024

Effectively Detecting Loop Closures using Point Cloud Density Maps.
Proceedings of the IEEE International Conference on Robotics and Automation, 2024

2023
KISS-ICP: In Defense of Point-to-Point ICP - Simple, Accurate, and Robust Registration If Done the Right Way.
IEEE Robotics Autom. Lett., 2023

Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation.
IEEE Robotics Autom. Lett., 2023

ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes.
Proceedings of the Robotics: Science and Systems XIX, Daegu, 2023

Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition.
Proceedings of the 25th IEEE International Conference on Intelligent Transportation Systems, 2023

Radar Velocity Transformer: Single-scan Moving Object Segmentation in Noisy Radar Point Clouds.
Proceedings of the IEEE International Conference on Robotics and Automation, 2023

2022
Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments.
IEEE Robotics Autom. Lett., 2022

Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions.
IEEE Robotics Autom. Lett., 2022

Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation.
IEEE Robotics Autom. Lett., 2022

2021
Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data.
IEEE Robotics Autom. Lett., 2021

Maneuver-based Trajectory Prediction for Self-driving Cars Using Spatio-temporal Convolutional Networks.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021

Embedded Stochastic Field Exploration with Micro Diving Agents using Bayesian Optimization-Guided Tree-Search and GMRFs.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks.
Proceedings of the Conference on Robot Learning, 8-11 November 2021, London, UK., 2021


  Loading...