CsAuthors.net database
Most of the data is coming from the
DBLP Computer Science Bibliography
and the rest is coming from CsAuthors.net own database.
We are working hard to keep everything up-to-date. However, we know that there are many papers not yet included in our dataset.
If something is wrong or missing, feel free to write me at
We are working hard to keep everything up-to-date. However, we know that there are many papers not yet included in our dataset.
If something is wrong or missing, feel free to write me at
my email address
.
The "Dijkstra number"
The Dijkstra number describes the collaborative distance between an author and
Edsger W. Dijkstra.
In our dataset 90.3% of authors are connected to Edsger W. Dijkstra and the average Dijkstra number among them is 5.08.
These kind of number/metrics are quite famous and already well defined in other fields.
In our dataset 90.3% of authors are connected to Edsger W. Dijkstra and the average Dijkstra number among them is 5.08.
These kind of number/metrics are quite famous and already well defined in other fields.
- The "Erdős number" expresses the collaborative distance with Paul Erdős, the famous Hungarian mathematician.
- The "Bacon number" expresses the co-acting distance with Kevin Bacon.
The "Erdős number"
The Erdős number describes the collaborative distance between an author and
Paul Erdős.
In our dataset 90.3% of authors are connected to Paul Erdős and the average Erdős number among them is 4.68.
Find more on Wikipedia with an article on the"Erdős number".
In our dataset 90.3% of authors are connected to Paul Erdős and the average Erdős number among them is 4.68.
Find more on Wikipedia with an article on the"Erdős number".
Jonathan C. Lau
Orcid: 0000-0002-8452-8915
According to our database1,
Jonathan C. Lau
authored at least 14 papers
between 2008 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2025
2024
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, September, 2024
MRI-degad: toward accurate conversion of gadolinium-enhanced T1w MRIs to non-contrast-enhanced scans using CNNs.
, , , , , , , ,
Int. J. Comput. Assist. Radiol. Surg., July, 2024
2023
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Dataset, November, 2023
2022
Mapping the subcortical connectome using <i>in vivo</i> diffusion MRI: Feasibility and reliability.
NeuroImage, 2022
2021
Corrections to "Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson's Disease: A Comprehensive Review".
IEEE Trans. Biomed. Eng., 2021
Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson's Disease: A Comprehensive Review.
IEEE Trans. Biomed. Eng., 2021
Effects of MP2RAGE B<sub>1</sub><sup>+</sup> sensitivity on inter-site T<sub>1</sub> reproducibility and hippocampal morphometry at 7T.
NeuroImage, 2021
2020
Hippocampal subfields revealed through unfolding and unsupervised clustering of laminar and morphological features in 3D BigBrain.
NeuroImage, 2020
2018
Quantification of local geometric distortion in structural magnetic resonance images: Application to ultra-high fields.
NeuroImage, 2018
Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping.
NeuroImage, 2018
2016
Individual feature maps: a patient-specific analysis tool with applications in temporal lobe epilepsy.
, , , , , , , , ,
Int. J. Comput. Assist. Radiol. Surg., 2016
A Framework for Patient-Specific Spinal Intervention Simulation: Application to Lumbar Spinal Durotomy Repair.
Proceedings of the Medicine Meets Virtual Reality 22 - NextMed, 2016
2008
Longitudinal neuroanatomical changes determined by deformation-based morphometry in a mouse model of Alzheimer's disease.
NeuroImage, 2008