Maximilian Zenk
Orcid: 0000-0002-8933-5995
According to our database1,
Maximilian Zenk
authored at least 24 papers
between 2020 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
CoRR, May, 2025
Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge.
CoRR, May, 2025
Benchmark of Segmentation Techniques for Pelvic Fracture in CT and X-ray: Summary of the PENGWIN 2024 Challenge.
CoRR, April, 2025
Comparative benchmarking of failure detection methods in medical image segmentation: Unveiling the role of confidence aggregation.
Medical Image Anal., 2025
Real-world federated learning in radiology: hurdles to overcome and benefits to gain.
J. Am. Medical Informatics Assoc., 2025
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025
Abstract: Client Security Alone Fails in Federated Learning - 2D and 3D Attack Insights.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025
Abstract: Skeleton Recall Loss - Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025
Abstract: Real-world Federated Learning in Radiology - Hurdles to Overcome and Benefits to Gain.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025
2024
Proceedings of the Machine Learning in Medical Imaging - 15th International Workshop, 2024
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2024 Workshops, 2024
Enhanced nnU-Net Architectures for Automated MRI Segmentation of Head and Neck Tumors in Adaptive Radiation Therapy.
Proceedings of the Head and Neck Tumor Segmentation for MR-Guided Applications, 2024
ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation.
Proceedings of the Twelfth International Conference on Learning Representations, 2024
Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures.
Proceedings of the Computer Vision - ECCV 2024, 2024
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024
2023
Nat. Mac. Intell., July, 2023
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, 2023
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023
Abstract: Towards Real-world Federated Learning in Medical Image Analysis using Kaapana.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023
2022
Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health, 2022
Proceedings of the Bildverarbeitung für die Medizin 2022, 2022
2021
2020
CoRR, 2020