Maximilian Zenk

Orcid: 0000-0002-8933-5995

According to our database1, Maximilian Zenk authored at least 24 papers between 2020 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2025
Inclusive, Differentially Private Federated Learning for Clinical Data.
CoRR, May, 2025

Advances in Automated Fetal Brain MRI Segmentation and Biometry: Insights from the FeTA 2024 Challenge.
CoRR, May, 2025

Benchmark of Segmentation Techniques for Pelvic Fracture in CT and X-ray: Summary of the PENGWIN 2024 Challenge.
CoRR, April, 2025

Comparative benchmarking of failure detection methods in medical image segmentation: Unveiling the role of confidence aggregation.
Medical Image Anal., 2025

Real-world federated learning in radiology: hurdles to overcome and benefits to gain.
J. Am. Medical Informatics Assoc., 2025

Abstract: Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025

Abstract: Client Security Alone Fails in Federated Learning - 2D and 3D Attack Insights.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025

Abstract: Skeleton Recall Loss - Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025

Abstract: Real-world Federated Learning in Radiology - Hurdles to Overcome and Benefits to Gain.
Proceedings of the Bildverarbeitung für die Medizin 2025, 2025

2024
Mitigating False Predictions in Unreasonable Body Regions.
Proceedings of the Machine Learning in Medical Imaging - 15th International Workshop, 2024

Longitudinal Segmentation of MS Lesions via Temporal Difference Weighting.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2024 Workshops, 2024

Enhanced nnU-Net Architectures for Automated MRI Segmentation of Head and Neck Tumors in Adaptive Radiation Therapy.
Proceedings of the Head and Neck Tumor Segmentation for MR-Guided Applications, 2024

ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation.
Proceedings of the Twelfth International Conference on Learning Representations, 2024

Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures.
Proceedings of the Computer Vision - ECCV 2024, 2024

Abstract: Multi-dataset Approach to Medical Image Segmentation - MultiTalent.
Proceedings of the Bildverarbeitung für die Medizin 2024, 2024

2023
Federated benchmarking of medical artificial intelligence with MedPerf.
Nat. Mac. Intell., July, 2023

MultiTalent: A Multi-dataset Approach to Medical Image Segmentation.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, 2023

Why is the Winner the Best?
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023

Abstract: Towards Real-world Federated Learning in Medical Image Analysis using Kaapana.
Proceedings of the Bildverarbeitung für die Medizin 2023, 2023

2022
Federated Learning Enables Big Data for Rare Cancer Boundary Detection.
CoRR, 2022

Towards Real-World Federated Learning in Medical Image Analysis Using Kaapana.
Proceedings of the Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health, 2022

Realistic Evaluation of FixMatch on Imbalanced Medical Image Classification Tasks.
Proceedings of the Bildverarbeitung für die Medizin 2022, 2022

2021
The Federated Tumor Segmentation (FeTS) Challenge.
CoRR, 2021

2020
CosSGD: Nonlinear Quantization for Communication-efficient Federated Learning.
CoRR, 2020


  Loading...